

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4725

Further Pure Mathematics 1

Specimen Paper

Additional materials: Answer booklet Graph paper List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Use formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2).$ [5]

- 2 The cubic equation $x^3 6x^2 + kx + 10 = 0$ has roots p q, p and p + q, where q is positive.
 - (i) By considering the sum of the roots, find p. [2]
 - (ii) Hence, by considering the product of the roots, find q. [3]
 - (iii) Find the value of k. [3]
- 3 The complex number 2+i is denoted by z, and the complex conjugate of z is denoted by z^* .
 - (i) Express z^2 in the form x + i y, where x and y are real, showing clearly how you obtain your answer.

[2]

- (ii) Show that $4z z^2$ simplifies to a real number, and verify that this real number is equal to zz^* . [3]
- (iii) Express $\frac{z+1}{z-1}$ in the form x+iy, where x and y are real, showing clearly how you obtain your answer. [3]
- 4 A sequence u_1, u_2, u_3, \dots is defined by

 $u_n = 3^{2n} - 1.$

- (i) Write down the value of u_1 . [1]
- (ii) Show that $u_{n+1} u_n = 8 \times 3^{2n}$. [3]
- (iii) Hence prove by induction that each term of the sequence is a multiple of 8. [4]

3

5 (i) Show that

$$\frac{1}{2r-1} - \frac{1}{2r+1} = \frac{2}{4r^2 - 1}.$$
[2]

(ii) Hence find an expression in terms of *n* for

$$\frac{2}{3} + \frac{2}{15} + \frac{2}{35} + \dots + \frac{2}{4n^2 - 1}.$$
 [4]

(iii) State the value of

(a)
$$\sum_{r=1}^{\infty} \frac{2}{4r^2 - 1}$$
, [1]

(b)
$$\sum_{r=n+1}^{\infty} \frac{2}{4r^2 - 1}$$
. [1]

- 6 In an Argand diagram, the variable point *P* represents the complex number z = x + i y, and the fixed point *A* represents a = 4 3i.
 - (i) Sketch an Argand diagram showing the position of A, and find |a| and $\arg a$. [4]
 - (ii) Given that |z-a| = |a|, sketch the locus of P on your Argand diagram. [3]
 - (iii) Hence write down the non-zero value of z corresponding to a point on the locus for which
 - (a) the real part of z is zero, [1]

(b)
$$\arg z = \arg a$$
. [2]

- 7 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$.
 - (i) Draw a diagram showing the unit square and its image under the transformation represented by A. [3]
 - (ii) The value of det A is 5. Show clearly how this value relates to your diagram in part (i). [3]
 - A represents a sequence of two elementary geometrical transformations, one of which is a rotation R.
 - (iii) Determine the angle of *R*, and describe the other transformation fully. [3]
 - (iv) State the matrix that represents *R*, giving the elements in an exact form. [2]

8 The matrix **M** is given by
$$\mathbf{M} = \begin{pmatrix} a & 2 & -1 \\ 2 & 3 & -1 \\ 2 & -1 & 1 \end{pmatrix}$$
, where *a* is a constant.

- (i) Show that the determinant of \mathbf{M} is 2a.
- (ii) Given that $a \neq 0$, find the inverse matrix \mathbf{M}^{-1} . [4]
- (iii) Hence or otherwise solve the simultaneous equations

$$x + 2y - z = 1,$$

$$2x + 3y - z = 2,$$

$$2x - y + z = 0.$$
[3]

[2]

[3]

(iv) Find the value of k for which the simultaneous equations

$$2y - z = k,$$

$$2x + 3y - z = 2,$$

$$2x - y + z = 0,$$

have solutions.

(v) Do the equations in part (iv), with the value of k found, have a solution for which x = z? Justify your answer. [2]

1	$\sum_{r=1}^{n} r$	$(r+1) = \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r = \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}n(n+1)$	M1		For considering the two separate sums
		$= \frac{1}{2}n(n+1)(2n+1+3) = \frac{1}{2}n(n+1)(n+2)$	A1 A1 M1		For either correct sum formula stated For completely correct expression For factorising attempt
		0	A1	5	For showing given answer correctly
				5	
2	(i)	$(p-q)+p+(p+q)=6 \Rightarrow p=2$	M1		For use of $\Sigma \alpha = -b/a$
			A1	2	For correct answer
	(ii)	2(2-q)(2+q) = -10	B1√		For use of $\alpha\beta\gamma = -d/a$
		Hence $4 - q^2 = -5 \Rightarrow q = 3$	M1		For expanding and solving for q^2
			A1	3	For correct answer
	(iii)	<i>EITHER</i> : Roots are -1, 2, 5	B1√		For stating or using three numerical roots
		$-1 \times 2 + 2 \times 5 + -1 \times 5 = k$			For use of $\sum \alpha \beta = c/a$
		1.e. $K = 3$	AIV		For contect answer nom their roots
		OR: Roots are -1, 2, 5	B1√		For stating or using three numerical roots
		Equation is $(x+1)(x-2)(x-5) = 0$	M1	2	For stating and expanding factorised form
		Hence $k = 5$	AIV	3	For correct answer from their roots
				8	
3	(i)	$z^{2} = (2+i)^{2} = 4 + 4i + i^{2} = 3 + 4i$	M1		For showing 3-term or 4-term expansion
			A1	2	For correct answer
	(ii)	$4z - z^2 = 8 + 4i - 3 - 4i = 5$	B1		For correct value 5
		$zz^* = (2+i)(2-i) = 5$	B1	•	For stating or using $z^* = 2 - i$
			ВІ	3	For correct verification of given restult
	(iii)	$\frac{z+1}{z-1} = \frac{3+i}{1+i} = \frac{(3+i)(1-i)}{(1+i)(1-i)} = \frac{4-2i}{2} = 2-i$	B1		For correct initial form $\frac{3+1}{1+1}$
			M1 A1	3	For multiplying top and bottom by $1-i$ For correct answer $2-i$
				_	
				8	
4	(i)	<i>u</i> ₁ = 8	B1	1	For correct value stated
	(ii)	$3^{2(n+1)} - 1 - (3^{2n} - 1) = 9 \times 3^{2n} - 3^{2n} = 8 \times 3^{2n}$	B1		For stating or using $u_{n+1} = 3^{2(n+1)} - 1$
			M1		For relevant manipulation of indices in u_{n+1}
			A1	3	For showing given answer correctly
	(iii)	u_1 is divisible by 8, from (i)	B1		For explicit check for u_1
		Suppose u_k is divisible by 8, i.e. $u_k = 8a$	M1		For induction hypothesis u_k is mult. of 8
		Then $u_{k+1} = u_k + 8 \times 3^{2k} = 8(a+3^{2k}) = 8b$	M1		For obtaining and simplifying expr. for u_{k+1}
		by the induction principle	A1	4	For correct conclusion, stated and justified
				_	
				8	
1					

-		2r+1-(2r-1) 2 put	1		
5	(1)	LHS = $\frac{1}{(2r-1)(2r+1)} = \frac{1}{4r^2-1} = RHS$	MI		For correct process for adding fractions
			A1	2	For showing given result correctly
	(ii)	Sum is $\left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right)$	M1		For expressing terms as differences using (i)
			A1		For at least first two and last terms correct
		This is $1 - \frac{1}{2n+1}$	M1		For cancelling pairs of terms
			A1	4	For any correct form
	(iii)	(a) Sum to infinity is 1	B1√	1	For correct value; follow their (ii) if cnvgt
		(b) Required sum is $\frac{1}{2n+1}$	B1√	1	For correct difference of their (iii)(a) and (ii)
				8	
6	(i)	(See diagram in part (ii) below)	B1		For point <i>A</i> correctly located
		$ a = \sqrt{(3^2 + 4^2)} = 5$	BI		For correct value for the modulus
		$\arg a = -\tan^{-1}\left(\frac{3}{4}\right) = -0.644$			For any correct relevant trig statement
				4	For correct answer (radians or degrees)
	(11)				
		\rightarrow	B1		For any indication that locus is a circle
		$\begin{pmatrix} +A \end{pmatrix}$	B1		For any indication that the centre is at A
			B1	3	For a completely correct diagram
	 (iii)	(a) $z = -6i$	B1	1	For correct answer
		(b) $z = 8 - 6i$	M1		For identification of end of diameter thru A
			A1	2	For correct answer
				10	
7	(i)	$ \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -2 & -1 \\ 0 & 2 & 1 & 3 \end{pmatrix} $	M1		For at least one correct image
			A1	2	For all vertices correct
			AI	3	For correct diagram
		$\langle \mathcal{A} $			
	(ii)	The area scale-factor is 5	B1		For identifying det as area scale factor
		The transformed square has side of length $\sqrt{5}$	M1		For calculation method relating to large sq.
		So its area is 5 times that of the unit square		3	For a complete explanataion
	(iii)	Angle is $\tan^{-1}(2) = 63.4^{\circ}$	B1		For $\tan^{-1}(2)$, or equivalent
		Enlargement with scale factor $\sqrt{5}$	B1	2	For stating 'enlargement'
			ы 		
		$\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right)$			$(\cos\theta - \sin\theta)$
	(iv)		M1		For correct $\begin{pmatrix} \sin\theta & \cos\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ pattern
		$\left(\overline{\sqrt{5}} \overline{\sqrt{5}}\right)$			
			A1	2	For correct matrix in exact form

(i)	$\det \mathbf{M} = a(3-1) - 2(2 - (-2)) - 1(-2 - 6)$	M1		For correct expansion process
	=2a	A1	2	For showing given answer correctly
(ii)	$\mathbf{M}^{-1} = \frac{1}{2a} \begin{pmatrix} 2 & -1 & 1 \\ -4 & a+2 & a-2 \\ -8 & a+4 & 3a-4 \end{pmatrix}$	M1		For correct process for adjoint entries
		A1		For at least 4 correct entries in adjoint
		B1		For dividing by the determinant
		A1	4	For completely correct inverse
(iii)	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \text{ with } a = 1$	B1		For correct statement involving inverse
	So $x = 0, y = 1, z = 1$	M1		For carrying out the correct multiplication
		A1	3	For all three correct values
(iv)	Eliminating x gives $4y - 2z = 2$	M1		For eliminating x from 2nd and 3rd equins
	So for consistency with 1st equal $k = 1$	M1		For comparing two y - z equations
		A1	3	For correct value for k
(v)	Solving $x + 3y = 2$ $3x - y = 0$ gives $x = \frac{1}{2}$ $y = \frac{3}{2}$	M1		For using $r = z$ to solve a pair of equips
(.)	These values check in $2y - r = 1$ so soln exists	A1	2	For a completely correct demonstration
			-	
			14	
		1		